Basic time series functions
Operators
- indsl.ts_utils.operators.absolute(x)
Absolute value.
The absolute value of time series or numbers.
- Parameters:
x – time series or numbers
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.add(a, b, align_timesteps: bool = False)
Add.
Add any two time series or numbers.
- Parameters:
a – Time-series or number.
b – Time-series or number.
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.arithmetic_mean(a, b, align_timesteps: bool = False)
Arithmetic mean.
The mean of two time series or numbers.
- Parameters:
a – Time series or number
b – Time series or number
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.arithmetic_mean_many(data: List[Series | float], align_timesteps: bool = False) Series | float
Arithmetic mean many.
The mean of multiple time series.
- Parameters:
data – List of time series
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.div(a, b, align_timesteps: bool = False)
Division.
Divide two time series or numbers. If the time series in the denominator contains zeros, all instances are dropped from the final result.
- Parameters:
a – Numerator
b – Denominator
align_timesteps (bool) – Auto-align. Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.inv(x)
Inverse.
Element-wise inverse of time series or numbers.
- Parameters:
x – time series or numbers
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.mod(a, b, align_timesteps: bool = False)
Modulo.
Modulo of time series or numbers.
- Parameters:
a – dividend time series or number
b – divisor time series or number
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.mul(a, b, align_timesteps: bool = False)
Multiplication.
Multiply two time series or numbers.
- Parameters:
a – Time-series or number.
b – Time-series or number.
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.neg(x)
Negation.
Negation of time series or numbers.
- Parameters:
x – time series or numbers
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.power(a, b, align_timesteps: bool = False)
Power.
Power of time series or numbers.
- Parameters:
a – base time series or number
b – exponent time series or number
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.sqrt(x)
Square root.
Square root of time series or numbers.
- Parameters:
x – time series or numbers
- Returns:
Time series.
- Return type:
pandas.Series
- indsl.ts_utils.operators.sub(a, b, align_timesteps: bool = False)
Subtraction.
The difference between two time series or numbers.
- Parameters:
a – Time-series or number.
b – Time-series or number.
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
Time series.
- Return type:
pandas.Series
Numerical calculus
- indsl.ts_utils.numerical_calculus.differentiate(series: Series, time_unit: Timedelta = Timedelta('0 days 01:00:00')) Series
Differentiation.
Differentiation (finite difference) using a second-order accurate numerical method (central difference). Boundary points are computed using a first-order accurate method.
- Parameters:
series – Time series.
time_unit – Frequency. User defined granularity to potentially override unit of time. Defaults to 1 h. Accepts integer followed by time unit string (ms|s|m|h|d). For example: ‘1s’, ‘5m’, ‘3h’ or ‘1d’.
- Returns:
First order derivative.
- Return type:
pandas.Series
- indsl.ts_utils.numerical_calculus.integrate_windows(values: ndarray, dt: ndarray, from_to_index: ndarray, number_of_windows: int) ndarray
Integrate the windows.
Performs the integration, through the trapezoidal- or midpoint-method. Since all the from and to window indexes are available and all inputs are np.ndarrays, this is parallelized and sped up with numba.
- Parameters:
values – Values to integrate corrected to the integrand rate.
dt – The time in milliseconds between datapoints.
from_to_index – index is the start of a window and value is the end index of the window.
number_of_windows – the number of windows to integrate
- Returns:
The result of each integrated window.
- Return type:
numpy.ndarray
- indsl.ts_utils.numerical_calculus.sliding_window_integration(series: Series, window_length: Timedelta = Timedelta('0 days 00:05:00'), integrand_rate: Timedelta = Timedelta('0 days 01:00:00')) Series
Sliding window integration.
Siding window integration using trapezoidal rule.
- Parameters:
series – Time series.
window_length –
window_length the length of time the window. Defaults to ‘5 minute’. Valid time units are:
‘W’, ‘D’, ‘T’, ‘S’, ‘L’, ‘U’, or ‘N’
‘days’ or ‘day’
‘hours’, ‘hour’, ‘hr’, or ‘h’
‘minutes’, ‘minute’, ‘min’, or ‘m’
‘seconds’, ‘second’, or ‘sec’
‘milliseconds’, ‘millisecond’, ‘millis’, or ‘milli’
‘microseconds’, ‘microsecond’, ‘micros’, or ‘micro’
‘nanoseconds’, ‘nanosecond’, ‘nanos’, ‘nano’, or ‘ns’.
integrand_rate –
integrand_rate. if the integrands rate is per sec, per hour, per day. Defaults to ‘1 hour’. Valid time units are:
‘W’, ‘D’, ‘T’, ‘S’, ‘L’, ‘U’, or ‘N’
‘days’ or ‘day’
‘hours’, ‘hour’, ‘hr’, or ‘h’
‘minutes’, ‘minute’, ‘min’, or ‘m’
‘seconds’, ‘second’, or ‘sec’
‘milliseconds’, ‘millisecond’, ‘millis’, or ‘milli’
‘microseconds’, ‘microsecond’, ‘micros’, or ‘micro’
‘nanoseconds’, ‘nanosecond’, ‘nanos’, ‘nano’, or ‘ns’.
- Returns:
Time series
- Return type:
pandas.Series
- indsl.ts_utils.numerical_calculus.trapezoidal_integration(series: Series, time_unit: Timedelta = Timedelta('0 days 01:00:00')) Series
Integration.
Cumulative integration using trapezoidal rule with an optional user-defined time unit.
- Parameters:
series – Time series.
time_unit – Frequency. User defined granularity to potentially override unit of time. Defaults to 1 h. Accepted formats can be found here: https://pandas.pydata.org/docs/reference/api/pandas.Timedelta.html. Some examples are: ‘1s’, ‘5m’, ‘3h’ or ‘1d’, but combinations also work: “1d 6h 43s”
- Returns:
Cumulative integral.
- Return type:
pandas.Series
- indsl.ts_utils.numerical_calculus.window_index(np_datetime_ns: ndarray[Any, dtype[float64]], windowlength_in_ns: int) ndarray
Sliding window indexing.
Returns a np.ndarray where the index corresponds to the starting point of a window, the value at the index corresponds to numerical indexes for the end of the window. This gives the window span each window is supposed to integrate to.
- Parameters:
np_datetime_ns – Datetime in integer ns.
windowlength_in_ns – The length of the window in ns.
- Retruns:
np.ndarray: indexing of timewindows
Logarithmic functions
- indsl.ts_utils.logarithmic_functions.exp(x)
Exp.
Calculates the exponential of a time series.
- Parameters:
x – time-series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.logarithmic_functions.log(x)
Ln.
Calculates the natural logarithm of a time series.
- Parameters:
x – time-series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.logarithmic_functions.log10(x)
Log base 10.
Calculates the logarithm with base 10 of a time series.
- Parameters:
x – time-series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.logarithmic_functions.log2(x)
Log base 2.
Calculates the logarithm with base 2 of a time series.
- Parameters:
x – time-series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.logarithmic_functions.logn(x, base, align_timesteps: bool = False)
Log, any base.
Calculates the logarithm with base “n” of a time series.
- Parameters:
x – Input time-series or number
base – Base time-series or number
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
time series
- Return type:
pandas.Series
Trigonometric functions
- indsl.ts_utils.trigonometric_functions.arccos(x)
Arccos.
Calculates the trigonometric arccosine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arccosh(x)
Arccosh.
Calculates the hyperbolic arccosine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arcsin(x)
Arcsin.
Calculates the trigonometric arcsine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arcsinh(x)
Arcsinh.
Calculates the hyperbolic arcsine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arctan(x)
Arctan.
Calculate inverse hyperbolic tangent of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arctan2(x1, x2, align_timesteps: bool = False)
Arctan(x1, x2).
Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
- Parameters:
x1 – First time series or number
x2 – Second time series or number
align_timesteps (bool) – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.arctanh(x)
Arctanh.
Calculates the hyperbolic arctangent of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.cos(x)
Cos.
Calculates the trigonometric cosine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.cosh(x)
Cosh.
Calculates the hyperbolic cosine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.deg2rad(x)
Degrees to radians.
Converts angles from degrees to radians.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.rad2deg(x)
Radians to degrees.
Converts angles from radiants to degrees.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.sin(x)
Sin.
Calculates the trigonometric sine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.sinh(x)
Sinh.
Calculates the hyperbolic sine of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.tan(x)
Tan.
Calculates the trigonometric tangent of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
- indsl.ts_utils.trigonometric_functions.tanh(x)
Tanh.
Calculates the hyperbolic tangent of time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pandas.Series
Utility functions
- indsl.ts_utils.utility_functions.bin_map(x1, x2, align_timesteps: bool = False)
Element-wise greater-than.
Maps to a binary array by checking if one time series is greater than another.
- Parameters:
x1 – First time series or number
x2 – Second time series or number
align_timesteps – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
time series
- Return type:
np.ndarray
- indsl.ts_utils.utility_functions.ceil(x)
Round up.
Rounds up a time series to the nearest integer greater than or equal to the current value.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.clip(x, low: float = -inf, high: float = inf)
Clip (low, high).
Given an interval, values of the time series outside the interval are clipped to the interval edges.
- Parameters:
x (pd.Series) – time series
low – Lower limit Lower clipping limit. Default: -infinity
high – Upper limit Upper clipping limit. Default: +infinity
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.create_series_from_timesteps(timesteps: List[timedelta]) Series
Time series from timestamps.
Create a time series which starts on the 2021-1-1 and contains data points with the provided timesteps in seconds. All values of the output series are zero.
- Parameters:
timesteps – Time steps between points.
- Returns:
Time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.floor(x)
Round down.
Rounds a time series down to the nearest integer smaller than or equal to the current value.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.generate_step_series(flag: Series) Series
Step-wise time series.
Construct a step-wise time series (with 0-1 values) from a flag time series. Consecutive 1 values are merged in one step.
- Parameters:
flag – Binary time series. The length of the flag time series has to be the same as the original data points.
- Returns:
Time series
- Return type:
pd.Series
Example
Given 4 datapoints and a flag with values [0, 0, 1, 0]
data points: x——-x——-x——-x flag: 0 0 1 0
The resulting step series is represented as:
x——-x
- step series: x—————x
0 01 1
- indsl.ts_utils.utility_functions.get_timestamps(series: Series, unit: Literal['ns', 'us', 'ms', 's', 'm', 'h', 'd', 'W'] = 'ms') Series
Get index of time series.
Get timestamps of the time series as values. The timestamps follow the Unix convention (Number of seconds starting from January 1st, 1970). Precision loss in the order of nanoseconds may happen if unit is not nanoseconds.
- Parameters:
series – Time-series
unit – Timestamp unit Valid values “ns|us|ms|s|m|h|d|W”. Default “ms”
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – series is not a time series
UserTypeError – unit is not a string
- indsl.ts_utils.utility_functions.iqr_test(x: ndarray, limit: Literal['upper', 'lower'] = 'upper', direction: Literal['greater', 'less'] = 'greater') ndarray
Z-scores test.
This functions performs a iqr test and returns a binary time series.
- Parameters:
x – Data values.
limit – Cut-off limit.
direction – Direction of the test. Options: - “greater”: the function will check if the values are greater than the cut-off limit. - “less”: the function will check if the values are less than the cut-off limit.
- Returns:
- Binary np.array with the results of the test.
1 values indicate that the test has passed.
- Return type:
np.ndarray
- indsl.ts_utils.utility_functions.maximum(x1, x2, align_timesteps: bool = False)
Element-wise maximum.
Computes the maximum value of two time series or numbers.
- Parameters:
x1 – First time series or number
x2 – Second time series or number
align_timesteps – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.minimum(x1, x2, align_timesteps: bool = False)
Element-wise minimum.
Computes the minimum value of two time series.
- Parameters:
x1 – First time series or number
x2 – Second time series or number
align_timesteps – Auto-align Automatically align time stamp of input time series. Default is False.
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.modified_z_scores_test(x: ndarray, cutoff: float = 3.0, direction: Literal['greater', 'less'] = 'greater') ndarray
Z-scores test.
This functions performs a modified z-scores test given a cut-off value and returns a binary time series.
- Parameters:
x – Data values.
cutoff – Cut-off value.
direction – Direction of the test. Options: - “greater”: the function will check if the modified z-scores are greater than the cut-off - “less”: the function will check if the modified z-scores are less than the cut-off
- Returns:
- Binary np.array with the results of the test.
1 values indicate that the test has passed.
- Return type:
np.ndarray
- indsl.ts_utils.utility_functions.normality_assumption_test(series: Series | ndarray, max_data_points: int = 5000, min_p_value: float = 0.05, min_W: float = 0.5) Tuple[float, float] | None
Test for normality assumption.
This function performs a Shapiro-Wilk test to check if the data is normally distributed.
- Parameters:
series – Time series
max_data_points – Maximum number of data points. The test is only performed if the time series contains less data points than this value. Default to 5000.
min_p_value – Minimum p value. Probability of the time series not being normally distributed. Default to 0.05.
min_W – Minimum W value. W is between 0 and 1, small values lead to a rejection of the normality assumption. Ref: https://www.nrc.gov/docs/ML1714/ML17143A100.pdf Default to 0.5.
- Raises:
UserValueError – time series has more than the maximum number of datapoints allowed for this test.
UserValueError – time series is uniform and not normally distributed
UserValueError – time series is not normally distributed.
- indsl.ts_utils.utility_functions.remove(series: Series, to_remove: List[float] | None = None, range_from: float | None = None, range_to: float | None = None)
Remove.
Remove specific values or a range of values from a time series.
- Parameters:
series – Time series
to_remove – Values List of values to remove. The values must be seperated by semicolons. Infinity and undefined values can be replaced by using the keywords inf, -inf and nan. If empty, which is the default, all values are kept.
range_from – Range start Only values above this parameter will be kept. If empty, which is the default, this range filter is deactivated.
range_to – Range end Only values below this parameter will be kept. If empty, which is the default, the range filter is deactivated.
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – series is not a time series
UserTypeError – to_remove is not a list
- indsl.ts_utils.utility_functions.replace(series: Series, to_replace: List[float] | None = None, value: float | None = 0.0)
Replace.
Replace values in a time series. The values to replace should be a semicolon-separated list. Undefined and infinity values can be replaced by using nan, inf and -inf (e.g. 1.0, 5, inf, -inf, 20, nan).
- Parameters:
series – Time series
to_replace – Replace List of values to replace. The values must be seperated by semicolons. Infinity and undefined values can be replaced by using the keywords inf, -inf and nan. The default is to replace no values.
value – Value used as replacement. Default is 0.0
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – series is not a time series
UserTypeError – to_replace is not a list
UserTypeError – value is not a number
- indsl.ts_utils.utility_functions.round(x, decimals: int)
Round.
Rounds a time series to a given number of decimals.
- Parameters:
x – time series
decimals – number of decimals
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.set_timestamps(timestamp_series: Series, value_series: Series, unit: Literal['ns', 'us', 'ms', 's', 'm', 'h', 'd', 'W'] = 'ms') Series
Set index of time series.
Sets the time series values to the Unix timestamps. The timestamps follow the Unix convention (Number of seconds starting from January 1st, 1970). Both input time series must have the same length.
- Parameters:
timestamp_series – Timestamp time series
value_series – Value time series
unit – Timestamp unit Valid values “ns|us|ms|s|m|h|d|W”. Default “ms”
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – timestamp_series or value_series are not time series
UserTypeError – unit is not a string
UserValueError – timestamp_series and value_series do not have the same length
- indsl.ts_utils.utility_functions.sign(x)
Sign.
Element-wise indication of the sign of a time series.
- Parameters:
x – time series
- Returns:
time series
- Return type:
pd.Series
- indsl.ts_utils.utility_functions.threshold(series: Series, low: float = -inf, high: float = inf)
Threshold.
Indicates if the input series exceeds the lower and higher limits. The output series is 1.0 if the input is between the (inclusive) limits, and 0.0 otherwise.
- Parameters:
series – Time series
low – Lower limit threshold. Default: -infinity
high – Upper limit threshold. Default: +infinity
- Returns:
Time series
- Return type:
pd.Series
- Raises:
UserTypeError – series is not a time series
UserTypeError – low or high are not floats
- indsl.ts_utils.utility_functions.threshold_test(x: ndarray, cutoff: float, direction: Literal['greater', 'less']) ndarray
Threshold test.
This functions performs a threshold test based on a direction (greater than or less than).
- Parameters:
x – Data values.
cutoff – Cut-off value.
direction – Direction of the test. Options: - “greater”: the function will check if the values are greater than the cut-off limit. - “less”: the function will check if the values are less than the cut-off limit.
- Returns:
- Binary np.array with the results of the test.
1 values indicate that the test has passed.
- Return type:
np.ndarray
- indsl.ts_utils.utility_functions.time_shift(series: Series, n_units: float = 0, unit: Literal['ns', 'us', 'ms', 's', 'm', 'h', 'd', 'W'] = 'ms') Series
Shift time series.
Shift time series by a time period
- Parameters:
series – Time-series
n_units – Time periods to shift Number of time periods to shift
unit – Time period unit Valid values “ns|us|ms|s|m|h|d|W”. Default “ms”
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – series is not a time series
UserTypeError – n_units is not a number
UserTypeError – unit is not a string
- indsl.ts_utils.utility_functions.union(series1: Series, series2: Series) Series
Union.
Takes the union of two time series. If a time stamp occurs in both series, the value of the first time series is used.
- Parameters:
series1 – time series
series2 – time series
- Returns:
time series
- Return type:
pd.Series
- Raises:
UserTypeError – series1 or series2 is not a time series
- indsl.ts_utils.utility_functions.z_scores_test(x: ndarray, cutoff: float = 3.0, direction: Literal['greater', 'less'] = 'greater') ndarray
Z-scores test.
This functions performs a z-scores test given a cut-off value and returns a binary time series.
- Parameters:
x – Data values.
cutoff – Cut-off Number of standard deviations from the mean.
direction – Direction of the test. Options: - “greater”: the function will check if the z-scores are greater than the cut-off - “less”: the function will check if the z-scores are less than the cut-off
- Returns:
- Binary np.array with the results of the test.
1 values indicate that the test has passed.
- Return type:
np.ndarray